sábado, 21 de agosto de 2010

APORTES METODOLOGICOS

Simultáneamente con la descripción de los sitios pilotos, los participantes fueron declarando contribuciones con relación al desarrollo de una metodología de análisis ecorregional, lo que se fue realizando en otra pantalla.

El siguiente diagrama presenta el resultado final de esta lluvia de ideas. Esto ilustra la posibilidad de trabajo en paralelo de un grupo, trabajo facilitado por esta metodología.

En esta etapa se observa sobre todo la formulación de ideas.

Progresivamente, algunos participantes formularon sugerencias para crear clases o categorías tales como por ejemplo, "capital humano", que se relaciona con "hacer un plan de control de natalidad" e "identificar barreras socio-económicas". Este trabajo continuó durante el transcurso del Taller.


Jerarquía de los sistemas

El objetivo de la teoría es la descripción y exploración de la relación entre los sistemas dentro de esta jerarquía.

Hay que distinguir "sistema" de "agregado". Ambos son conjuntos, es decir, entidades que se constituyen por la concurrencia de más de un elemento; la diferencia entre ambos consiste en que el sistema muestra una organización de la que carecen los agregados. Así pues, un sistema es un conjunto de partes interrelacionadas.

Los sistemas pueden ser:

a. Sistemas Abiertos

Se trata de sistemas que importan y procesan los elementos (energía, materia, información) de sus ambientes y esta es una característica propia de todos los sistemas vivos. Que un sistema sea abierto significa que establece intercambios permanentes con su ambiente, intercambios que determinan su equilibrio, capacidad reproductiva o continuidad, es decir, su viabilidad (entropía negativa, teleología, morfogénesis, equifinalidad).

Los sistemas vivos son SISTEMAS ABIERTOS pues intercambian con su entorno energía e información. Ejemplos de éstos serían: una célula, una planta, un insecto, el hombre, un grupo social. La familia, por tanto, la consideraremos un Sistema Abierto.

Los sistemas abiertos tienden hacia una evolución constante y un orden estructural, en contraposición a los cerrados en los que se da una tendencia a la indiferenciación de sus elementos y al desorden, hasta alcanzar una distribución uniforme de la energía.

b. Sistemas Cerrados

Un sistema es cerrado cuando ningún elemento de afuera entra y ninguno sale fuera del sistema. Estos alcanzan su estado máximo de equilibrio al igualarse con el medio (entropía, equilibrio). En ocasiones el término sistema cerrado es también aplicado a sistemas que se comportan de una manera fija, rítmica o sin variaciones, como sería el caso de los circuitos cerrados. Si no ocurre importación o exportación en ninguna de sus formas, como información, calor, materia física, etc. y por consiguiente sus componentes no se modifican. Ejemplo: una reacción química que tenga lugar en un recipiente sellado y aislado.

Al considerar los distintos tipos de sistemas del universo Kennet Boulding proporciona una clasificación útil de los sistemas donde establece los siguientes niveles jerárquicos:

1. Primer nivel, estructura estática. Se le puede llamar nivel de los marcos de referencia.

2. Segundo nivel, sistema dinámico simple. Considera movimientos necesarios y predeterminados. Se puede denominar reloj de trabajo.

3. Tercer nivel, mecanismo de control o sistema cibernético. El sistema se autor regula para mantener su equilibrio.

4. Cuarto nivel, "sistema abierto" o auto estructurado. En este nivel se comienza a diferenciar la vida. Puede de considerarse nivel de célula.

5. Quinto nivel, genético-social. Está caracterizado por las plantas.

6. Sexto nivel, sistema animal. Se caracteriza por su creciente movilidad, comportamiento teleológico y su autoconciencia.

7. Séptimo nivel, sistema humano. Es el nivel del ser individual, considerado como un sistema con conciencia y habilidad para utilizar el lenguaje y símbolos.

8. Octavo nivel, sistema social o sistema de organizaciones humanas constituye el siguiente nivel, y considera el contenido y significado de mensajes, la naturaleza y dimensiones del sistema de valores, la transcripción de imágenes en registros históricos, sutiles simbolizaciones artísticas, música, poesía y la compleja gama de emociones humanas.

9. Noveno nivel, sistemas trascendentales. Completan los niveles de clasificación: estos son los últimos y absolutos, los ineludibles y desconocidos, los cuales también presentan estructuras sistemáticas e interrelaciones.



ENFOQUES DE LA T. G. S

Al enfoque de sistemas puede llamársele correctamente teoría general de sistemas aplicada (TGS aplicada). Además, es impórtame proporcionar al lector una comprensión básica del surgimiento de la ciencia de los sistemas generales.

LOS DIFERENTES ASPECTOS DEL ENFOQUE DE SISTEMAS

El enfoque de sistemas puede describirse como:

1. Una metodología de diseño.

2. Un marco de trabajo conceptual común.

3. Una nueva clase de método científico.

4. Una teoría de organizaciones.

5. Dirección por sistemas.

6. Un método relacionado a la ingeniería de sistemas, investigación de operaciones, eficiencia de costos, etc.

7. Teoría general de sistemas aplicada.

El enfoque de sistemas abarca los principios de la teoría general de sistemas. la teoría general de sistemas es una nueva disciplina que se inició en 1954. La TGS intenta alcanzar el estatus de una ciencia general a la par de las matemáticas y la filosofía. La teoría general de sistemas proporciona la capacidad de investigación al enfoque de sistemas. Ésta investiga los conceptos, métodos y conocimientos pertenecientes a los campos y pensamiento de sistemas. En este contexto, los términos "enfoque de sistemas" y "teoría general de sistemas aplicada" se usan como sinónimos.

Existen dos enfoques para el desarrollo de la Teoría General de Sistemas que son sugeridos por ella misma.

El primer enfoque observar al universo empírico y escoger ciertos fenómenos generales que se encuentran en las diferentes disciplinas y tratar de construir un modelo teórico que sea relevante.

Los fenómenos de importancia universal para todas las disciplinas son:

- La interacción de un individuo de algún tipo con su medio.

- El crecimiento.

- La teoría de la información y de la comunicación.

El segundo enfoque es ordenar los campos empíricos en una jerarquía de acuerdo con la complejidad de la organización de sus individuos básicos o unidades de conducta y tratar de desarrollar un nivel de abstracción apropiado a cada uno de ellos.

Características de los diversos enfoques de la teoría de sistema

• El Enfoque Reduccionista

Gran parte del progreso que se ha obtenido en cada uno de los campos de las ciencias se debe a el enfoque reduccionista, el cual estudia un fenómeno complicado a través del análisis de sus partes o elementos.

• Los fenómenos no solo son estudiados por el enfoque reduccionista, existen fenómenos que solo son explicados teniendo en cuenta todo lo que le comprende.

• Si los sistemas se van haciendo más complicados, la explicación de los fenómenos que presentan los comportamientos de esos sistemas toman en cuenta su medio y su totalidad.

• El enfoque reduccionista tiende a la subdivisión cada vez mayor del todo, y al estudio de esas subdivisiones mientras que el enfoque de sistemas trata de unir las partes para alcanzar la totalidad lógica o una independencia relativa con respecto al grupo que pertenece.

Sistema:

Es un conjunto organizado de cosas o partes interactuantes e interdependientes, que se relacionan formando un todo unitario y complejo.

Cabe aclarar que las cosas o partes que componen al sistema, no se refieren al campo físico (objetos), sino más bien al funcional. De este modo las cosas o partes pasan a ser funciones básicas realizadas por el sistema. Podemos enumerarlas en: entradas, procesos y salidas.

Isomorfismo

Isomórfico significa "con una forma similar" y se refiere a la construcción de modelos de sistemas similares al modelo original. Por ejemplo, un corazón artificial es isomórfico respecto al órgano real: este modelo puede servir como elemento de estudio para extraer conclusiones aplicables al corazón original.

Recursividad

Es una característica de todo sistema viable y se refiere a que todo sistema contiene dentro de sí a varios otros sistemas, llamados subsistemas, los cuales poseen funciones y características similares al sistema superior en que están contenidos. Por ejemplo una empresa matriz ( Banco) posee filiales dedicadas al área financiera, que permiten el financiamiento la compañía e individualmente cada una de esas filiales también posee un área financiera.

Sinergía

Este concepto nos dice que el todo es diferente ( normalmente mayor ) a la suma de sus partes.



INGENIERIA DE SITEMAS Y LA T. G. S

INGENIERÍA DE SISTEMAS

Es la aplicación de las ciencias matemáticas y físicas para desarrollar sistemas fue utilicen económicamente los materiales y fuerzas de la naturaleza para el beneficio de la humanidad. Una definición especialmente completa -y que data de 1974- nos la ofrece un estándar militar de las fuerzas aéreas estadounidenses sobre gestión de la ingeniería.

Ingeniería de Sistemas es la aplicación de esfuerzos científicos y de ingeniería para: (1) transformar una necesidad de operación en una descripción de parámetros de rendimiento del sistema y una configuración del sistema a través del uso de un proceso iterativo de definición, síntesis, análisis, diseño, prueba y evaluación; (2) integrar parámetros técnicos relacionados para asegurar la compatibilidad de todos los interfaces de programa y funcionales de manera que optimice la definición y diseño del sistema total; (3) integrar factores de fiabilidad, mantenibilidad, seguridad, supervivencia, humanos y otros en el esfuerzo de ingeniería total a fin de cumplir los objetivos de coste, planificación y rendimiento técnico.

Ingeniería de Sistemas es un conjunto de metodologías para la resolución de problemas mediante el análisis, diseño y gestión de sistemas.

Es el conjunto de recursos humanos y materiales a través de los cuales se recolectan, almacenan, recuperan, procesan y comunican datos e información con el objetivo de lograr una gestión eficiente de las operaciones de una organización



TEORÍA GENERAL DE SISTEMAS

La teoría general de sistemas o teoría de sistemas (TGS) es un esfuerzo de estudio interdisciplinario que trata de encontrar las propiedades comunes a entidades, los sistemas, que se presentan en todos los niveles de la realidad, pero que son objeto tradicionalmente de disciplinas académicas diferentes. Su puesta en marcha se atribuye al biólogo austriaco Ludwig von Bertalanffy, quien acuñó la denominación a mediados del siglo XX.

Contenido:

Lo primero que hay que decir es que la Teoría General de Sistemas existe sólo como propósito, como programa de investigación teórica, sin que se pueda decir que la factibilidad de tal proyecto o la operatividad de tal metateoría estén demostradas.

La T.G.S. busca descubrir isomorfismos en distintos niveles de la realidad que permitan:

Usar los mismos términos y conceptos para describir rasgos esenciales de sistemas reales muy diferentes; y encontrar leyes generales aplicables a la comprensión de su dinámica.

Favorecer, primero, la formalización de las descripciones de la realidad; luego, a partir de ella, permitir la modelización de las interpretaciones que se hacen de ella.

Facilitar el desarrollo teórico en campos en los que es difícil la abstracción del objeto; o por su complejidad, o por su historicidad, es decir, por su carácter único. Los sistemas históricos están dotados de memoria, y no se les puede comprender sin conocer y tener en cuenta su particular trayectoria en el tiempo.

Superar la oposición entre las dos aproximaciones al conocimiento de la realidad:

La analítica, basada en operaciones de reducción.

La sistémica, basada en la composición.

La aproximación analítica está en el origen de la explosión de la ciencia desde el Renacimiento, pero no resultaba apropiada, en su forma tradicional, para el estudio de sistemas complejos y relativamente únicos.

Desarrollo:

Aunque la T.G.S. surgió en el campo de la Biología, pronto se vio su capacidad de inspirar desarrollos en disciplinas distintas y se aprecia su influencia en la aparición de otras nuevas. Así se ha ido constituyendo el amplio campo de la sistémica o de las ciencias de los sistemas, con especialidades como la Cibernética, la Teoría de la Información, la Teoría de Juegos, la Teoría del Caos o la Teoría de las Catástrofes. En algunas, como la última, ha seguido ocupando un lugar prominente la Biología.

Más reciente es la influencia de la T.G.S. en las Ciencias Sociales. Destaca la intensa influencia del sociólogo alemán Niklas Luhmann, que ha conseguido introducir sólidamente el pensamiento sistémico en esta área.

1 comentario: