jueves, 5 de agosto de 2010

Aportes semanticos

Las sucesivas especializaciones de las ciencias obligan a la creación de nuevas palabras, estas se acumulan durante sucesivas especializaciones, llegando a formar casi un verdadero lenguaje que sólo es manejado por los especialistas.

De esta forma surgen problemas al tratarse de proyectos interdisciplinarios, ya que los participantes del proyecto son especialistas de diferentes ramas de la ciencia y cada uno de ellos maneja una semántica diferente a los demás.

La Teoría de los Sistemas, para solucionar estos inconvenientes, pretende introducir una semántica científica de utilización universal.

  • Sistema: 
Un sistema es un conjunto de funciones, virtualmente referenciada sobre ejes, bien sean estos reales o abstractos. También suele definirse como un conjunto de elementos dinámicamente relacionados formando una actividad para alcanzar un objetivo operando sobre datos, energía o materia para proveer información.



  •  Entradas:
Las entradas son los ingresos del sistema que pueden ser recursos materiales, recursos humanos o información.

Las entradas constituyen la fuerza de arranque que suministra al sistema sus necesidades operativas.

  •  Proceso:

El proceso es lo que transforma una entrada en salida, como tal puede ser una máquina, un individuo, una computadora, un producto químico, una tarea realizada por un miembro de la organización, etc.

En la transformación de entradas en salidas debemos saber siempre como se efectúa esa transformación. Con frecuencia el procesador puede ser diseñado por el administrador. En tal caso, este proceso se denomina "caja blanca". No obstante, en la mayor parte de las situaciones no se conoce en sus detalles el proceso mediante el cual las entradas se transforman en salidas, porque esta transformación es demasiado compleja. Diferentes combinaciones de entradas o su combinación en diferentes órdenes de secuencia pueden originar diferentes situaciones de salida. En tal caso la función de proceso se denomina una "caja negra".



  •  Caja Negra:

La caja negra se utiliza para representar a los sistemas cuando no sabemos que elementos o cosas componen al sistema o proceso, pero sabemos que a determinadas corresponden determinadas salidas y con ello poder inducir, presumiendo que a determinados estímulos, las variables funcionaran en cierto sentido.

  •  Salidas:

Las salidas de los sistemas son los resultados que se obtienen de procesar las entradas. Al igual que las entradas estas pueden adoptar la forma de productos, servicios e información. Las mismas son el resultado del funcionamiento del sistema o, alternativamente, el propósito para el cual existe el sistema.

Las salidas de un sistema se convierten en entrada de otro, que la procesará para convertirla en otra salida, repitiéndose este ciclo indefinidamente.

  •  Relaciones:

Las relaciones son los enlaces que vinculan entre sí a los objetos o subsistemas que componen a un sistema complejo.

  •  Atributos:

Los atributos de los sistemas, definen al sistema tal como lo conocemos u observamos. Los atributos pueden ser definidores o concomitantes: los atributos definidores son aquellos sin los cuales una entidad no sería designada o definida tal como se lo hace; los atributos concomitantes en cambio son aquellos que cuya presencia o ausencia no establece ninguna diferencia con respecto al uso del término que describe la unidad.

  •  Contexto:

Un sistema siempre estará relacionado con el contexto que lo rodea, o sea, el conjunto de objetos exteriores al sistema, pero que influyen decididamente a éste, y a su vez el sistema influye, aunque en una menor proporción, influye sobre el contexto; se trata de una relación mutua de contexto-sistema.

Tanto en la Teoría de los Sistemas como en el método científico, existe un concepto que es común a ambos: el foco de atención, el elemento que se aísla para estudiar.

  •  Rango:

En el universo existen distintas estructuras de sistemas y es factible ejercitar en ellas un proceso de definición de rango relativo. Esto produciría una jerarquización de las distintas estructuras en función de su grado de complejidad.

Cada rango o jerarquía marca con claridad una dimensión que actúa como un indicador claro de las diferencias que existen entre los subsistemas respectivos.

Esta concepción denota que un sistema de nivel 1 es diferente de otro de nivel 8 y que, en consecuencia, no pueden aplicarse los mismos modelos, ni métodos análogos a riesgo de cometer evidentes falacias metodológicas y científicas.

Para aplicar el concepto de rango, el foco de atención debe utilizarse en forma alternativa: se considera el contexto y a su nivel de rango o se considera al sistema y su nivel de rango.

  •  Subsistemas:

En la misma definición de sistema, se hace referencia a los subsistemas que lo componen, cuando se indica que el mismo esta formado por partes o cosas que forman el todo.

Estos conjuntos o partes pueden ser a su vez sistemas (en este caso serían subsistemas del sistema de definición), ya que conforman un todo en sí mismos y estos serían de un rango inferior al del sistema que componen.

Estos subsistemas forman o componen un sistema de un rango mayor, el cual para los primeros se denomina macrosistema.

  •  Variables:

Cada sistema y subsistema contiene un proceso interno que se desarrolla sobre la base de la acción, interacción y reacción de distintos elementos que deben necesariamente conocerse.

Dado que dicho proceso es dinámico, suele denominarse como variable, a cada elemento que compone o existe dentro de los sistemas y subsistemas.

Pero no todo es tan fácil como parece a simple vista ya que no todas las variables tienen el mismo comportamiento sino que, por lo contrario, según el proceso y las características del mismo, asumen comportamientos diferentes dentro del mismo proceso de acuerdo al momento y las circunstancias que las rodean.

  •  Parámetro:

Uno de los comportamientos que puede tener una variable es el de parámetro, que es cuando una variable no tiene cambios ante alguna circunstancia específica, no quiere decir que la variable es estática ni mucho menos, ya que sólo permanece inactiva o estática frente a una situación determinada.

  •  Operadores:

Otro comportamiento es el de operador, que son las variables que activan a las demás y logran influir decisivamente en el proceso para que este se ponga en marcha. Se puede decir que estas variables actúan como líderes de las restantes y por consiguiente son privilegiadas respecto a las demás variables. Cabe aquí una aclaración: las restantes variables no solamente son influidas por los operadores, sino que también son influenciadas por el resto de las variables y estas tienen también influencia sobre los operadores.

  •  Retroalimentación:

La retroalimentación se produce cuando las salidas del sistema o la influencia de las salidas de los sistemas en el contexto, vuelven a ingresar al sistema como recursos o información.

La retroalimentación permite el control de un sistema y que el mismo tome medidas de corrección en base a la información retroalimentada.

Feed-forward o alimentación delantera:

Es una forma de control de los sistemas, donde dicho control se realiza a la entrada del sistema, de tal manera que el mismo no tenga entradas corruptas o malas, de esta forma al no haber entradas malas en el sistema, las fallas no serán consecuencia de las entradas sino de los proceso mismos que componen al sistema.

  •  Permeabilidad:

La permeabilidad de un sistema mide la interacción que este recibe del medio, se dice que a mayor o menor permeabilidad del sistema el mismo será mas o menos abierto.

Los sistemas que tienen mucha relación con el medio en el cuál se desarrollan son sistemas altamente permeables, estos y los de permeabilidad media son los llamados sistemas abiertos.

Por el contrario los sistemas de permeabilidad casi nula se denominan sistemas cerrados.

  •  Integración e independencia:

Se denomina sistema integrado a aquel en el cual su nivel de coherencia interna hace que un cambio producido en cualquiera de sus subsistemas produzca cambios en los demás subsistemas y hasta en el sistema mismo.

Un sistema es independiente cuando un cambio que se produce en él, no afecta a otros sistemas.

  •  Centralización y descentralización:

Un sistema se dice centralizado cuando tiene un núcleo que comanda a todos los demás, y estos dependen para su activación del primero, ya que por sí solos no son capaces de generar ningún proceso.

Por el contrario los sistemas descentralizados son aquellos donde el núcleo de comando y decisión está formado por varios subsistemas. En dicho caso el sistema no es tan dependiente, sino que puede llegar a contar con subsistemas que actúan de reserva y que sólo se ponen en funcionamiento cuando falla el sistema que debería actuar en dicho caso.

Los sistemas centralizados se controlan más fácilmente que los descentralizados, son más sumisos, requieren menos recursos, pero son más lentos en su adaptación al contexto. Por el contrario los sistemas descentralizados tienen una mayor velocidad de respuesta al medio ambiente pero requieren mayor cantidad de recursos y métodos de coordinación y de control más elaborados y complejos.

  •  Adaptabilidad:

Es la propiedad que tiene un sistema de aprender y modificar un proceso, un estado o una característica de acuerdo a las modificaciones que sufre el contexto. Esto se logra a través de un mecanismo de adaptación que permita responder a los cambios internos y externos a través del tiempo.

Para que un sistema pueda ser adaptable debe tener un fluido intercambio con el medio en el que se desarrolla.

  •  Mantenibilidad:

Es la propiedad que tiene un sistema de mantenerse constantemente en funcionamiento. Para ello utiliza un mecanismo de mantenimiento que asegure que los distintos subsistemas están balanceados y que el sistema total se mantiene en equilibrio con su medio.

  •  Estabilidad:

Un sistema se dice estable cuando puede mantenerse en equilibrio a través del flujo continuo de materiales, energía e información.

La estabilidad de los sistemas ocurre mientras los mismos pueden mantener su funcionamiento y trabajen de manera efectiva (mantenibilidad).

  •  Armonía:

Es la propiedad de los sistemas que mide el nivel de compatibilidad con su medio o contexto.

Un sistema altamente armónico es aquel que sufre modificaciones en su estructura, proceso o características en la medida que el medio se lo exige y es estático cuando el medio también lo es.

Optimización y sub.-optimización:

Optimización: modificar el sistema para lograr el alcance de los objetivos.

Suboptimización: es el proceso inverso, se presenta cuando un sistema no alcanza sus objetivos por las restricciones del medio o porque el sistema tiene varios objetivos y los mismos son excluyentes, en dicho caso se deben restringir los alcances de los objetivos o eliminar los de menor importancia si estos son excluyentes con otros más importantes.

  •  Éxito:

El éxito de los sistemas es la medida en que los mismos alcanzan sus objetivos.

La falta de éxito exige una revisión del sistema ya que no cumple con los objetivos propuestos para el mismo, de modo que se modifique dicho sistema de forma tal que el mismo pueda alcanzar los objetivos determinados.

  •  Límites:

Es la línea que delimita la relación de un sistema con su contexto, determinando hasta donde el contexto es de interés para el sistema.









No hay comentarios:

Publicar un comentario